Course Number and Name

BMA301 - MATHEMATICS - III

Credits and Contact Hours

4 & 75

Course Coordinator's Name

Ms P.Jagadeeswari

Text Books and References

Text Books:

1. Kreyszig, E. "Advanced Engineering Mathematics" 8th Edition, John Wiley and Sons, (Asia) Pvt., Ltd, Singapore, 2000

2. Monty J.Strauss, Gerald L.Bradley, and Karl L.Smith. Calculus" 3rd Edn.[Prentice Hall] University Bookstore, New Delhi.

References:

- Narayanan, S.ManicavachangamPillay, T.K.Ramanaiah, G."Advanced mathematics for Engineering Students", Volume2 and 3(2nd Edition), S.Viswanathan (printers & publishers Pte, Ltd.,) 1992.
- 2. M.K "Engineering Mathematics" Volumes3-A&B, 13th Edition National Publishing
- 3. Company, Chennai, 1998.
- 4. Grewal, B.S., "Higher Engineering Mathematics" (35thEdition), Khanna Publishers, Delhi2000
- 5. George B. Thomas and Ross L.Finney. "Calculus and Analytical Geometry" 9th Edn. Narosa
- 6. Indian Student Edition, New Delhi.
- 7. Dennis G.Zill and Warren S.Wright. "Advanced Engineering Mathematics". 3rd Edn. Jones & Bartlett Publishers, UK. 1992.
- 8. www.everydaymathonline.com

Course Description

- To equip students with adequate knowledge of Mathematics.
- To formulate problems in Engineering, and solve them analytically

Prerequisites	Co-requisites					
Mathematics -I & II	Nil					
required, elective, or selected elective (as per Table 5-1)						

required

Course Outcomes (COs)

- COI Solve PDE of second and higher order with constant coefficients.
- CO2 Expand given functions by using the concept of Fourier series
- CO3 Solve many of the Engineering models of Heat equations and Wave equations which are PDEs with boundary conditions
- CO4 Solve many problems in Automobile, Medicine, Electronic Engineering which are Differential equations of linear or non-linear
- CO5 Solve differential equations by Laplace transforms
- CO6 To understand about Fourier Transform which is necessary for signal processing.

Student Outcomes (SOs) from Criterion 3 covered by this Course

	-	-				•					
COs/SOs	а	b	С	d	е	f	g	h	i	j	k
CO1	Н					Μ				L	
CO2	М		Н		Н			L	Н		М
CO3	М		Μ	Н					Μ		
CO4	М						Μ		Μ	Н	
CO5		L	Μ	Н	Н				Н		
CO6				Н	Н	Н			Н		

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation - Solutions of standard types of first order equations Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

UNIT II FOURIER SERIES

List of Topics Covered

Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

UNIT III BOUNDARY VALUE PROBLEMS

Classification of second order linear partial differential equations - Solutions of one - dimensional wave equation, one-dimensional heat equation - Steady state solution of two-dimensional heat equation - Fourier series solutions in Cartesian coordinates.

UNIT IV LAPLACE TRANSFORMS

Transforms of simple functions - Basic operational properties - Tran sforms of derivatives and integrals - Initial and final value theorems - Inverse transforms - Convolution theorem - Periodic functions-Applications of Laplace transforms for solving linear ordinary differential equations upto second order with constant coefficients and simultaneous equations of first order with constant coefficients.

UNIT V FOURIER TRANSFORMS

Statement of Fourier integral theorem - Fourier transform pairs - Fourier Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

9+6

9+6

9+6

9+6

9+6